UNIVERSITY OF SÃO PAULO UNIVERSITY OF SÃO PAULO USC University of Southern California

Is there reduction via laxing

in northern dialects of Brazilian Portuguese?

Arthur Santana l arthursantana@usp.br

CLAIM

σ_{NFP}: ˈkɐ̃.mɛ.ra 'camera'; *ˈtʃi.kɛ.tʃi 'ticket'; ˈɐ̃.ˈkɔ.ra 'anchor'; *po.ˈli.gɔ.nu 'polygon' σ₁: ze.ˈlo.zu 'careful'; *xes.ˈpɔʃ.ta 'answer' goʃ.ˈto.zu 'tasty'; *ko.ˈlɛ.ga 'colleague'

[e, o] result from [atr] harmony. [ε, ɔ] are the result of mid-vowel neutralization.

EXTEND PREDICTIONS

Difference in relative prominence

- Effects of phonetic prominence enhancement in σ_1 (Barnes, 2006)
- Segmental sonority is correlated to prominence (Prince & Smolensky, 1993)

INTRODUCTION

Reduction as a **contrast-enhancement** mechanism in OT:

- LIC-NONCORNER/STRESS (Crosswhite, 1999);
- N-WAYCONTRAST, SPACEF1≥N (Padgett, 1997).

Reduction as a **prominence alignment** mechanism:

-*a/σ >> *ε, ɔ/σ >> *e, o/σ >> *i, u/σ (Crosswhite, 1999) -*i, u/σ >> *e, o/σ >> *ε, ɔ/σ >> *a/σ (Kenstowicz, 2010)

Reduction via tensing is predictable and expected. However, previous claims regarding a pattern of reduction via laxing in BP motivate three questions:

1) Is there really reduction via laxing in northern dialects of BP?

- 2) How can this be accounted for?
- 3) What are the theoretical implications of such a pattern?

BACKGROUND AND METHODS

Vowel System in Brazilian Portuguese

a) Stressed (σ́) : /i, e, ε, a, ɔ, o, u/
b) Unstressed word-final (σ]_w) : /i, a, u/
c) Unstressed word-internal

Word-initial syllables (σ_1)Pretonic bearing secondary stress (σ)Non-finalPostonic (σ_{NFP})Pretonic syllables ($\check{\sigma}$)

Non-final Postonic (\sigma_{NFP}) (Santana, 2016)

- Lax-mid vowels are the result of regressive harmony (eg. 'paw.pε.bra eyelid);
- Tense-mid vowels result of mid-vowel neutralization (eg. 'tʃi.ke.tʃi *ticket)*

Word-initial syllables (σ_1)

- 20 speakers of BP's x 56 words in carrier sentence x randomly repeated 3x.
- ANOVA (F1 value) and Chi-square (category assigned by investigator).

RESULTS

Front vowels			B	ack vowe	ls	- Lax-mid are more frequent	
[ɛ] [e] [i]		[၁]	[0]	[u]	than tense-mid vowels.		
55%	41,7% 3,3%		59,8% 39,1% 1,1%		1,1%	eg. [xε.ˈviʃ.te] 'magazine'	
Total: 1680 tokens			Total: 1680 tokens			[xe.'vi∫.te]	

(σ _{NFP}) (ὄ)	(σ ₁) (ˌσ)
/i, <mark>e</mark> , a, <mark>o</mark> , u/	/i, <mark>ɛ</mark> , a, <mark>ɔ</mark> , u/

a_{prom} >> e, o_{prom} >> ε, ɔ_{prom} >> i, u_{prom}

CAPES

NPa

Mid vowels are selected due to prominence alignment constraints

FORMALIZATION

Reduction via laxing results from an interaction between contrast enhancement and prominence alignment types of neutralization.

- Corner vowels are protected due to Contrast enhancemet constraints
- LIC-NONCORNER/STRESS do not have this ability: Corner vowels are not protected. Mid vowels are penalized.

N-way contrast: maintain a number *n* of contrasts

Space Constraints: any two segments contrasting in F1 differ by at least 1/nth of the full F1 range (Padgett, 1997)

i	а		3-way Cont.	Space F1≥3	4-way Cont.
		•	¥ 1) A /	•	*

	d. I, d	· ! VV	L	
i ę a	b. i, ε, e, a		**!*W	L
	c.🖙 i, e, a		*	*
i e e a	d.≌i, ε, a		*	*

- Prominence alignment selects [ϵ , σ] in more prominent contexts and [ϵ , σ] in less prominent contexts with inverse ranking.

	*{i, u}/σ ₁	*{e, o}/σ ₁	*{ε, ɔ}/σ ₁	*{a}/σ ₁
a. 🖙i, ɛ, a	*		*	*
b. i, e, a	*	*!W	L	*

Higher ranked constraints
 driving harmony capture
 the overall tendency

THEORETICAL IMPLICATIONS

- Reduction via laxing in BP shows that the contrast enhancement mechanism must be formalized by making reference to corner vowels as a set due to their contrastive power, not by penalizing mid vowels for their non-contrastive ability.
- Further question: how does maximizing contrast constraints deal with the typology of vowel reduction?

REFERENCES

[+atr] _{σ1} was	Stressed		Pretonic		Pretonic			
produced more		[3]	[e]	[i]	[၁]	[0]	[u]	
significantly	high	36%	63,8%	0,2%	45,8%	53,3%	0,9%	
when followed	tense	28,6%	71,4%	0%	13%	86,2%	0,8%	
by $[+atr]_{\sigma 1}$.	lax	95,4%	4,6%	0%	95%	5%	0%	
A patter among	low	58,3%	23,7%	18%	81,4%	15,7%	2,4%	
exceptios was		Total	: 1680 to	kens	Total: 1680 tokens			
found:		<i>p-value</i> < 0.001			<i>p-value</i> < 0.001			

- [e] in σ₁ with [ε, ͻ, a] in (ϭ)		[έ, <u>΄</u>]	[á]	total		[é, ó]	[í, ú]	total
ocurred when followed by [ʃ]	[e]	22	10	= 32	[8]	173	120	= 293
in coda. (eg. e∫ˈtaka 'stake')						165	65	= 230

- No significant difference between $[-atr]_{\sigma_1} e [-atr]_{\delta}$ (Paired t-test. *p-value* = 0.9)

Barnes, J. (2006). Strength and weakness at the interface: positional neutralization in Phonetics and Phonology. Berlin: Mouton Gruyter.

Crosswhite, K. (2001). Vowel reduction in Optimality Theory. New York: Routledge.

518.

- Kenstowicz, M. (2010). Vocale incerta, vocale aperta, Studi e Saggi Linguistici, 48, 25–50.
- Padgett, J. (1997) Perceptual distance of contrast: vowel height and nasality. in: Walker, R. et. al (eds.) Phonology at Santa Cruz 5: 63-78
- Prince, A.; Smolensky, P. (1993). Optimality Theory: Constraint interaction in generative grammar. Rutgers Optimality Archive 537, http://roa.rutgers.edu/.

Santana, A. (2016) Uma abordagem fonológica para as postônicas não-finais. Domínios de LinguaGem, v. 10, p. 494-